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UNIFORM CONVEXITY IN LORENTZ 
SEQUENCE SPACES 

BY 

Z. ALTSHULER" 

ABSTRACT 

Necessa ry  and sufficient condit ions for Lorentz  sequence  spaces  d(a,p) 
(1 < p < oo), to be uniformly convexifiable are given. In case p => 2 the modulus  
of  convexi ty  is calculated. 

Let 1 _-<p <0o, fo rany  a = { a , a 2 , . . . } E  c o \ l ~  1 = a ,  > a2 > . . .  > O , l e t  

d ( a , p ) = { x = { a , } ~ C o ;  [ [x l [=  Io~.,,,I.a, } < o ~  

where 7r is the set of all permutations of the natural numbers. The space d (a, p ) 

is a Banach space called Lorentz sequence space. For basic properties of 

Lorentz sequence spaces we refer the reader to [1,2]. 

We recall that a Banach space X is called uniformly convex if for every 

e > 0 there exists ~x (e )>  0 such that ~ x ( e )  = i n f ( l -  {[(x + y)/21[), where the 

infimum is taken over all x,y E X  satisfying [ Ixf l , l ly  [l=< 1 and [Ix - yl[=> e. 

The function 6x(e) is called the modulus of convexity of X. A Banach space 

(x, il 11) is called uniformly convexifiable if there exists an equivalent norm 

11 II, such that (x, ll II,) is uniformly convex. 

A necessary and sufficient condition for uniform convexity of Lorentz 

function spaces was already given by Haiperin [4]. We begin by reproducing 

here the argument of Halperin in the special case of Lorentz sequence spaces. 

Our first result, Theorem 1, is to a large extent (mainly the equivalence I ¢:> III) 

already contained in [4]. 

* This is part of  the au thor ' s  Ph .D. 'Thes is  prepared at the Hebrew Univers i ty  of  Jerusalem,  
under  the supervis ion of Professor  L. Tzafriri. I wish to thank Professor  Tzafriri and Professor  J. 
L indens t rauss  for their interest  and advice. 
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Our main result here is Theorem 2. In it we evaluate  (up to a bounded factor)  

the value of ~x(e) in terms of S(n)  = ET=, a~ in the case p ->_ 2. Theorem 3 shows 

(again in the case p > 2) that the asymptot ic  formula  we get for the modulus of 

convexi ty  in Theorem 2 cannot  be improved by passing to an equivalent  norm. 

That  is, if Y is a space isomorphic to X then t%,(e) -< A~x(e) for  some constant  

A independent  of e. Our final result, Theorem 4, character izes  all the functions 

8 (e )  which are equivalent  to the modulus of  convexi ty  of  some Lorentz  

sequence space d(a,p) with p > 2 .  

We say that the function u (x) satisfies the A2 condition for  large values of x, 

if there exists an x0 > 0  and a constant  C > 0  such that u(2x)_-< Cu(x) for  all 

x -> x0. Two functions [(x) and g(x) defined on some set K of reals are called 

equivalent,  (denoted by f - g ) ,  if there exist constants  A,B  > 0 such that 

Bg(x)<=[(x)<=Ag(x) for  all x E K .  

In the sequel we denote by {en }~= ~ the natural unit vector  basis of the Loren tz  

sequence space d (a,p). For  notions in general Banach space theory we follow 

the terminology of [6]. 

THEOREM I. Let d(a,p) ( l < p  <oo) be a Lorentz sequence space. The 

[ollowing conditions are equivalent: 

I) d(a,p ) is uniformly convex. 

II) d(a,p ) is uni[ormly convexilfable. 

III)  inf, S(2n)/S(n)  = k > 1. 

IV) S(n)/n ~ a,. 

The proof  of the equivalence III  ¢:> IV is immediate:  

III  ¢:~ IV: If  inf~S(2n)/S(n) = k > 1, then 

k - 1 -<_ (S(2n)  - S(n))/S(n)<= nan/S(n), and 

hence: 

an <-S(n)/n <-(k - l)-~a,. 

Conversely ,  if S(n)/n ~ an. then 

i <= S(2n)/S(n)  <= C .2na2n/nan, 

which implies that a2n/a, >_ (2C)- ' ,  It follows that: 

(S(2n)  - S(n)) /S(n)  >= na2,/Cnan >- (2C2) -~ , 

and thus S(2n)/S(n)  > 1 + (2C2) -~. 

To prove  the equivalences I ¢~ II ¢¢, III  we need some lemmas.  
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LEMMA 1. Let {x.} be an unconditional basis of a Banach space X with an 

unconditional constant 1. Then X is uniformly convex if and only if for every 

0 > 0  and every l > n  > 0  there exists a ~ , ( r / , 0 ) > 0  such that the following 

holds: I f x  = ~.a,x,, y = E/3,x, E X, I Ix I I, II Y[I--< I satisfy I ]Y~,~Ea,x, I1--- 0 where 

E = {i;(1 - r / ) la ,  l > 1/3, 1} then I[(x + y)/2l  I = < 1 - a , (n ,0) .  

PROOF. Suppose X is uni formly convex and let 8x(e) be its modulus  of 

convexi ty .  If  x and y are as in the s ta tement  of the lemma then 

[Ix-yll~llE(~,-/3,)x,[l~nllE~,x, l l~0  
i E E  l E E  

and hence  l l(x + y ) /211-  < _ 1 - &<(a~0). To prove the converse ,  notice that  it is 

enough to show that  for every  e > 0  i n f ( l - l l ( x  + y ) / 2 [ ] ) > 0  where the inf is 

taken over  all x = E~,x,, y = E/3ix, sat isfying ] Ix 11 --< 1, ] [ y ] I --< 1, ] Ix - y [ [ > e 
and or,, /3, _-> 0 for  all i = 1 , 2 , . . . .  T o  s e e  this, let 

A={i;o~,[3,<O} B = { i ; i E A  la,-1=>[/3, l} and 

Define 

C = { i ;  i ~ A ,  1~,1<1/3,1}- 

0 i E C  [ 0 i ~ B  
a ; =  la, [ otherwise /3~ = I/3, [ otherwise 

a n d x '  = Ea~x,,y '  = E/3 ~x,. It is easily checked  that  I Ix'l f,I lY'l I ~ 1, I Ix + Y ll--< 

I I x ' + y ' l l  and I I x ' - y ' l l - - - I I x  - y l l / 2 .  
Assume now that a suitable 8,(7/,0) exists and that x and y are vectors  with 

norm 1 sat isfying II x - y II > ~ and having non-negat ive coefficients a,, fl,. Put 

G = {i ; a, =>/3, } and F = {i ; a, ~/3, }. Since I[ x - y II --> e ei ther  

t l Y~,Eo (a, - /3,)x,  I I => e ]2 or I I Y~'EF (Ct, --/3,)X, II > ~/2, and we may  clearly as- 
sume that  the first case holds. Let  H={i,(1-e/4)a,>=/3,}.  Then for  all 

i E G \ H ,  a, - ~, <= ca,~4 and hence  / IE,~o\u(a ,  - [3,)x, It <- 

II ~/4x ,~ \ ,~ , x ,  II --< ~/4. Consequent ly  I I~:,~,,~,,x, II ~ I I~:,~,, (~, - /3 ,)x,  II >= 
e/4.  

F rom the definition of ~,(r/,0), it fol lows that  I I(x + y ) / 2 l l -  -< 1 - 8 , ( e / 4 , e / 4 )  
and hence  X is uni formly convex.  

LEMMA 2. Let {a.}~=, be a decreasing sequence of positive numbers. 
Assume that i n f . S (2n ) /S (n )=  k > 1  where S ( n ) =  E~=, a,. Then 
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s ( 2 r " n ) / S ( n )  > k "  

( S ( 2 " n )  - S ( ( 2 "  - l ) n ) ) / S ( n )  > (k /2)m(k  - 1) 

(1) 

(2) 

LEMMA 3. 

263 

n , m  = 1 , 2 , . . .  

n , m  = 1 , 2 , - . . .  

O b v i o u s ,  b y  i n d u c t i o n  o n  m. 

( S ( 2 ~ n )  - S ( (2  ~ - l ) n ) ) / S ( n )  

= ( S ( 2 ~ n ) / S ( n ) )  ( S ( T " n )  - S ( (2  m - l ) n ) ) / S ( 2 ~ n )  

=> k ~ - 2 - "  - ( S ( 2 ~ + ' n )  - S ( 2 ~ n ) ) / S ( 2 ~ n )  >= (k /2 )~ (k  - I). 

Let  d ( a , p )  be a Loren t z  sequence  space  with inf ,  S ( 2 n ) / S ( n ) =  

k > 1 and  let e > O. Le t  {h,}~'=, be a decreasing sequence  o f  non-negat ive  reals 

sat is fy ing:  

(3) ~hia~  <- 1. 
i=l 

A s s u m e  also that {h,,}~=, is a subsequence  o f  {hi}~=, for  which 

(4) h"~e  ~ = ~h , ,a t  => e ~. 
j=~ j=l 

Then 

(5) £ h,jai, > Ce "''°~2k 
i=l 

where C is some  cons tan t  dependent  only  on k. 

PROOF. 

a n d  p u t  

Le t  A = {j ;it > 2tmJj}, B = {j ;it <-- 2tm]j} w h e r e  m = Iog2(4e -P)/Iog2k, 

~j = hi, - hii., ] = 1 , 2 , " "  r - 1 ~r = hi~. 

W e  h a v e  

(6) 
n 

jEA 

>- k ~ " ~  [3tS(j) >= (km/2)  ~ f l j S ( j ) .  
j ~A  lEA 
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H e n c e  E~A[3~S(j)<= 2k -'~ = e ~/2. By  (4) we  get that Ej~B/3~S(j)_>- e~/2. Conse-  

quent ly  

(7) ,=,~'h'ja" = ~ [3j a,~ >-~s  , (S (2C~] j ) -S ( (2  cmJ- l)j))  

> (k/2)t" ' (k  - 1) ~-',/3~S(j) > ( k / 2 ) " ( k  - l )eP/2 > Ce "/'°B~k 

LEMMA 4. Let  {x. } be a symmetr ic  basis o f  a Banach  space X.  A s s u m e  that  

there exist increasing sequences o f  integers {n, }7=,, {k~ }~., and a cons tan t  M such 

that  sup, A (n,k, )/A (n, ) <= M where A(n)  = J lXT=,x, I I- Then X is not  uniformly 

convexifiable. 

PROOF. By [3] it is enough to cons t ruc t  k, dimensional  subspaces  V, of X 

which are uni formly  i somorphic  to l~'. Fix i and let 

vm = ~ yj /A(n,)  m = 1 , 2 , . . . , k ,  
j = ( m - - I ) n i + l  

For  any sequence  of  scalars {-m}~=, we  get 

I ~ m  ,.~ki m = l  I ~ m  ~ k  i rn = l 

=< sup lain i" A (n,k,)/A (n,) - M sup I(xm 

Hence ,  d( [v . ]~=~,  1~') =<M. 

LEMMA 5. Le t  { a . } E c o \ l ,  a~ ~ a 2  >> _ . . .  >=0. I[ i n f . S ( 2 n ) / S ( n ) =  1, where 

S (n)  = ET=, a,  then for  every e > 0 there exist sequences o f  integers {n, }7-,, {k,}?=, 

such that  S (n ,k , ) /S (n , )  <= 1 + e. 

PROOF. Fix e > 0 .  By hypothes is  there exists  a sequence  n, such that 

S ( 2 n , ) / S ( n , )  < 1 + 2-'. Le t  k, = i. Then 

i 

S(k ,n , ) /S (n , )  = 1 + ~ , ( S ( l n , ) -  S( ( l  - 1)n,)) /S(n,)  

<_ 1 + (i - l) ( S ( 2 n , ) -  S (n , ) ) / S (n , )  <= 1 + (i - 1)2-' _--- 1 + e ,  
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prov ided  i is large enough.  

PROOF OF THEOREM 1. Clearly I ~ I I . I f  i n f . S ( 2 n ) / S ( n )  = I, then by L e m m a s  

4 and 5 d(a ,p )  is not  un i formly  convexif iable ,  hence  II :~  III. 

III =),I. Le t  0 > 0 and 0 < r / <  1 be given. By L e m m a  1. it is enough to show 

that  there  exists  a ~j( , / ,0)  > 0  such that  if x = E ,~za , e ,y  = ETa,/3,e,I Ix I I, 

Ilyll=<l, IIx,~,~,x, ll----0 where  E = { i ;  (1-n)l~,l---I/3,1}, we have 

II(x +y)/211" =<1-,%(-0,0). Also as noted  in the p roof  of  L e m m a  1, we may 

assume wi thout  loss of  general i ty  that  a , /3 ,  =>0 and x = E'/:,ot,e~,y = EL,/3,e~ 
fo r  some n < :~. Not ice  that  for  1 < p  < ~  and 0 <  r / <  1, we have  0 <  T/' < 1 

such that for  eve ry  a,b > 0  ((a + b ) / 2 ) "  _-< ( 1 -  rl ') (a " + b ~ ) / 2 ,  provided  

(1 - r / )a  =>b. 

Define the sequence  {h,},"=, by 

h, = {(1 - r/ ') (a'~ +/3~, )/2 i E E 
((a, +/3, )/2) p i ~ E 

We may assume,  wi thout  loss of  general i ty  that  {h~ }7=, is a decreas ing  sequence .  

Indeed  let ~r be the pe rmuta t ion  such that  {h~,~}L1 is decreas ing  and let 

x '=E?=~ao. ,e ,  y'=X.~=~fl~(~,e, then  c lear ly  I l x ' l l ,  t l y ' l / - - < l ,  I l x ' - y ' l l  = 

l lx -YI[ and I Ix'+y'l I--l Ix +y[ I- Now 

"~ h,a, + rl ' ( i  - rl ' )  ' ~ h,a, 
/ = 1  i ~ E  

= ~'~ h,a, + (1 + 77'(I - 77') ') ~ h,a, 
J ~ E  l E E  

~ ( ~  +/3~)a,/2 ~(I Ix [Ip +lly {IP)/2~ I, 

Since h ~P ~ (a, +/3,)/2 for  eve ry  i, we get that 

n 

~ h , a ,  = X-~h~/"e.2_, - I [" >- ll~[('~, +/3,)/2]e, l l°=ll(x + y)/211" 
i = 1  t = l  i = l  

and hence  

(8) 
[l(x + y)/2[ J" =-< 1 - r / ' ( l  - rl')-' ~ h,a,. 



266 z. ALTSHULER 

Let  E = {ij}~=~. Since  for  i E E we have  

h lip = ((1 - r#')/2)'/s (a~ +/3,".) '/s ==- ((1 - ~?')/2)'/"a. 

it fo l lows that  

Israel J. Math., 

r 

Eh,,aJ = l l E  h, ~,I --> C, llE ,e,I >=c,o s. 
~=l l E E  i E E  

Consequen t ly ,  by L e m m a  3, 

~h,,a,=Eh,a,>>-C2OS"°'2k 
#=1 l E E  

and hence  by  (8) l l(x + y)/211 s <= I - C3~'0 °s~°':k. This proves  the ex i s tence  of  a 

suitable ~(r / ,  0). 

REMARK 1. All Lorentz sequence spaces d (a ,p )  (I < p  < ~ )  are strictly 

¢ o n i J e x .  

PROOF. Le t  x = E a , e , ,  y=E/3,e,  E d ( a , p )  I l y l l - - I l x l l - - I  and 

I I(x + y)/211 = I. Assume that  the sequence  la, +/3, l is arranged in decreas ing  

order .  Then  

1 = I[ (x + y)/2{l s = E ( l a ,  +/3, i/2)Pa, _<-- (E I a, ISa, + E t/3 , IOa,)/2 

-----(tlx II s + [ l y  l l s ) /2- -  < _ i. 

Fo r  this inequal i ty  to become  an equal i ty  we must  have  a, =/31 for  all i, that  is 

x = y .  

TUEOREM 2. Let d(a ,p  ) (2 =< p < ~) be a Lorentz sequence space, satisfying 

inf ,  S ( 2 n ) / S ( n )  = k > I. Then there exist constants As, Bs > 0 such that for all 

0 < e < l  

(9) Bp(M(e-S) )  -' <-_ ~(e ) <- A p ( M ( e - " ) )  -', 

where 8(e)  is the modulus of  convexity of  d (a ,p )  and M ( x )  is the inverse 

function o f  the function g (x) defined by 
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(10) g(x )  = 

0 x = O  

i n f S ( T " n ) / S ( n )  x = 2 "  m = 0 , 1 , 2 , . . .  
n 

linearly on each interval of  the form (2",2"+1). 

Before proving the theorem we make some simple observat ions  concerning 

the function g. Since 

(!1) g ( 2 "  ) = inf S(2mn )/S(n ) <= inf S (2m+'n  )/S(n ) = g (2" +'), 
n n 

g(x)  is an increasing function which satisfies g(2m)_- > k ' .  Now since 

(12) g ( 2 "  )/2 m = inf ( S ( 2 " n ) 1 2 " S ( n  )) >= inf  ( S ( 2 "  +'n )/2 m +'S(n )) 
n n 

=g(2m+')12 m+', 

we get that g(2m)/2 " is a decreasing function of m, and therefore  g(x) /x  is a 

decreasing function of x on [1,o~).Hence M ( x ) / x  is an increasing function of x, 

where M ( x ) =  g- ' (x) .  Moreover  

(13) g(2"+')/g(2 m ) 

Hence  g(2x) /g(x)>=k > ! for all x > 0 .  In that case M(kx) /M(x )<=2 for  all 

x > 0, which is equivalent to the A2 condition. In the sequel we shall need also 

the following lemma. 

LEMMA 6. Let f ( x )  be a function satisfying the A,_ condition for x >= 1 such 

that f ( x ) / x  is increasing. Then 

I) There exists a convex function u (x ) which is equivalent to f ( x  ) on [ 1, oo). 
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II) There exists a convex function v(x) which is equivalent to w(x)--  

if(x-'))-' o n  (0,1]. 

PROOF. I. Define the function u(x)=f~  supo<,~_of'(t)dv. Clearly u(x) is 

convex, and u(x) >= f(x)  for all x _-> I. Since the A2 condition is equivalent to the 

condition xf'(x)/f(x)<= A for all x >_- I and some constant A, we get that: 

A(X(  P f (  )[ I A foX(f( )[ Af( u(x) <= su t t d v =  < v v)dv<- x) 
JO \O<t----<v / 

for all x => 1. 
Part II is proved by a similar argument. The function v is defined by 

~0 x v(x) = sup w'(t)dv. 
O<I~v 

Since 

(14) S(2mn)/S(n)>-g(2 ~) foral l  n,m = 1 , 2 , . . .  

the proof of Lemma 2 shows that 

(15) (S(2mn)-S((2  m- l )n ) ) /S (n )>-g(2m)2-m(k - l )  n,m = 1 , 2 , - . .  

In view of these inequalities we can reformulate Lemma 3 as follows. 

LEMMA 7. Let d(a,p) be a Lorentz sequence space with inf, S(2n)/S(n)  = 

k > 1, and let e >0. Let {h~}%~ be a decreasing sequence, and {h~,}7=~ a 

subsequence of {h,};'=, satisfy (3) and (4), then 

(16) ~ h,,a,, -> C(M(e-"))- '  
i=t 

where M ( x ) =  g-~(x), g(x) is defined by (10), and C > 0  is some constant. 

PROOF. Let A and B be as in the proof of Lemma 3, where m is a real 

number chosen so that 

(17) g(2 m) = 4e-" 

By (14) the same computation as that in (6) shows that E~A/3jS(/)_-- < 

2(g(2m)) -~ = eP/2. Hence by (15) the same computation as that in (7) gives 
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~_~ h,ja,, >= (k - i )g (2"  ). 2 -"  • eP/2 >= (k - 1)2-" _>- C ( M ( e  -p))-t. 
j = l  

269 

We deno te  by  C > 0  i = ! , 2 , . . .  the cons t an t s  which  will a p p e a r  in the 

sequel .  

PROOF OF THEOREM 2. We  show first that  ~(e)>-_Bp(M(e-"))  -'. Le t  

x , y  ~ d ( a , p ) , l l x  ]1 = IlYr] = 1 and IIx - y { l > = e ,  0 < e  < 1. As  we have  seen  in 

the p roof  of  L e m m a  1, we m a y  a s sume ,  wi thout  loss of  genera l i ty ,  that  

x =E~=,a,e,y=E~=,/3,e~ fo r  s o m e  t < ~ ,  that  a ,  /3~=>0 fo r  all i, and that  

] ] E ,~ ,  (a, - /3 ,  )e, I1 => e /4  where  H = {i ; (1 - e /4)a ,  =>/3, }. Le t  n = [ - log e ] and 

rl~,=e~-k/"/4, k = O , l , . . . , n .  Not ice  that  if ( 1 - r / k ) a _ - > b , l > r / k > 0 ,  a , b > 0  

then 

(18) ((a + b )/2) p <-_ (1 - 71'k) (a" + bP)/2 

where  T/~ is given by  

(19) ~;, = I - 2' P(2 - rtk)" (1 + (I - r/k)P) - '  = C , ~  + O(r /~) .  

Define Hk, k = 0 ,  1 , - . . , n  by  

(20) H k = { i ;  ( l - - r /k+, )a ,</3 ,_- -<(1-- r /k)a ,}  k = 0 , 1 , - - - , n - I .  

/4, = {i; 0 </3, =< 3/4a,} 

and put ek = II ~,~,~ - /3 , )e ,  I l, k = 0 , . . . ,  n. Clear ly  

(21) ~e~---_(e/4) p and 0 Hk =H. 
k =0 k =0  

N o w  ei ther  

(22) Y~ (~, -/3,)e, r J --> e/8 
i ~ H n  

or  

(23) II ~ (a,-/3,)e, }1 >-e/8. 
n--1 

i ~UHk  
k=O 
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If (22) holds, define the sequence {h,}~=, by 

h i = {  ( 1 - , / ' ) ( a ~ + [ 3 ~ ) / 2  i @ H ,  

((a, + [3, )/2)" i ~ H. 

As we remarked in the proof of Theorem 1 there is no loss of generality to 

assume that {h~}'~=, is a decreasing sequence. We have 

I 

(24)" I I(x + y)/21 I" ~ II ~ h :/"e, I1" 
i = l  

= ~,h,a,  ~(llx I1" +lly rl")/2- ,:(1-  ~')-' ~ h,a,. 
i = 1  i~Hn 

t P p Since r/~ = 1/4, r/. is a constant independent of e, and since h~ --- (1 - 7/~)ct ~/2 

we get that 

(25) 11Z hl"e,l]"~-C~[I ~ ~,e, tl"~C~e ". 
iEHn IEH. 

Using Lemma 7 with {h,},~H. as {h~j}~=,, we deduce that E,~n.hia~ >-_ 
C4(M(e-")) -~, and by (24) I I(x + y)/21 I_- < 1 - C~(M(e-"))-'. If (23) holds, define 

the sequence {h~}~=, by 

h , = f  ( l - r /~ , ) (a~+[3P) /2  i ~ H k  k = O , l , . . . , n - l .  

((as + [3,)/2) p otherwise 

and assume that {h~}~j is a decreasing sequence. Clearly 

t 

(26) II(x + y)/2rl" ~11 ~h2"e, I1" and 
i = 1  

(27) 
t n - - I  

2h,a ,  + ~  "O~,(l- "0~,)-' 2 h,a,---(fix II0 +llY 11")/2<--I. 
i = l  k ~ O  i~Hk 

Now fix k, 0_-<k_-<n- l .  For every i E H k  

a, - [3, <= ~lk÷~a~ hence 
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(28) 
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h, > ( ! -  ' ~/2 > n~,)(a, = n~)a,  = ( 1 -  - / 3 , ) " / 2 n L ,  
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c o n s e q u e n t l y  

(29) II ~ hl/"e,l] p ~ ( I - ' 0~ , )2 - '~+111  ~ ( a , -  ~,)e, II "- 
i E H  k i E H k  

Since "0k+1 = ~ke- ' /"  and 10=>e- 'J" >= 1 p rov ided  

]E,~,-,~n, ~, II = c ~ n ; % ~ .  H e n c e  by  L e m m a  7, I ~ I/p D 

e <- 10 -1 we get  that  

(30) ~'. h,a, >= CT(M(n~e~")) -I. 
i E H k  

Using  (19), (26), (27) and (30) we deduce  that  

n I 

I I(x + y)1211" <= 1 - C8 ~'. r l~(M(~e~") ) - ' .  
k =11 

By L e m m a  6 (II), ( M ( x - ' ) )  

G ( x )  0 < x ~ l .  Us ing  (21) 

(e 1l./4)2 __> C9 we get that  

is equ iva len t  to an increas ing  c o n v e x  func t ion  

and  the fac t s  that  p >_-2 and  " - '  2 2 Ek=or/k > ~ , - i  => 

II(x + y)/211~ <- l - C , o G  n~-"e~ <-_ l - C , , G  e~ 
\ k  =0  

5 I - C , 2 G ( e  P) <= I - C , ~ ( M ( e - " ) ) - ' .  

This  p r o v e s  the first inequal i ty  in (9). T o  p rove  the o the r  inequal i ty  in (9) let 

e > 0 and define x = Y.a~ei, y = Y/3ie~, by  

ra --lip a, = (S(2 ))-~/, i_-<2"n /3, = - ( S ( 2  n)) (2" - i) 
i > 2 " n  0 

where  2_-_g(2'~)e" =>1 and n is chosen  such that  2g(2"n )>=S(2"n ) /S (n ) .  

Clear ly  IIx I I = l l y l l  = 1, IIx - y [ l "  = 2 " S ( n ) / S (  2"n)>=e" and II(x + y)/2[l" = 
(S( (2"  - l )n)) /S(2mn)  = 1 - ( S ( 2 " n ) -  S( (2"  - l)n))]S(2'~n) >_ 1 - 2-" = 

I - C , 4 ( M ( e - " ) ) - ' .  This  conc ludes  the p roo f  of  the t heo rem.  

i =<(2 m - l ) n  

n < i  <=2"n 
i > 2 " n  
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Let  d(a,p) be a Lorentz  sequence space and suppose that there exists an no 

such that S(2n )/S(n) is an increasing function of n for  n _-> no. Then for  n > no, 

S(2~n )/S(n ) > S(2~no)/S(no) >_ S(2~)/S(no). Hence  there exist constants  A~ 

and A2 such that A ,S(2  ~) => g(2 ~) >_-A2S(2~). 

For  example  if a , ~ n - ~ ( I o g n )  -~ (0_-<a<l ,0_-<f l ) ,  then S ( n ) ~  

n~-~(Iogn) -~ and S(2n)/S(n)  is an increasing function of n. Hence  g ( x ) ~  

x ' - ~ ( l o g x )  -~ and therefore  M(x)  = g-'(x) ~ x'l'-~(logx)~l'-L Consequent ly ,  

8 ( e  ) ~ ( M ( e - P ) )  -I  ~ e p/'-~' [ioge [-~/i-.. 

I f  the function S(2n)/S(n)  is decreasing then 

k = infS(2n)/S(n) =l imS(2n) /S(n)  and 
n n 

S(2"n)/S(n)  >_- k "  = (2" ),og~k. 

Hence  g(x) is equivalent to the function x .°*2k, and 8(e)-( (e-~) ' / ' °*2k)  - ' =  

e ~/~°~k. For  example,  if a .~n-~( Iogn)  ~ ( 0 - - a < l , 0 < / 3 ) ,  then S ( n ) ~  

n ' - ~ ( l o g n )  ~ and $(2n)/S(n)  is a decreasing function of n. Since 

l im.S(2n)/S(n)  = 2 '-~ we get that ~(e)  - e p/'-~. 

THEOREM 3. Let X be a Banach space isomorphic to a Lorentz sequence 

space d(a,p) (p=>2). Then there exists a constant A > 0  such that 

~ x ( e ) l ~ ( e ) < A  for all 0 < e  < 1, where ~×(e) and ~,,(e) are the moduli of 

convexity of X and d(a,p) respectively. 

PROOF. Define g(x) and M(x) as in Theorem 2. Since M(x)  satisfies the A2 

condition for large x there is a constant  C such that M(2x)_<-CM(x)  for  all 

x _-> I. Suppose that the theorem is false. Then there would exist a sequence 

{e~}7=, such that for every i e~ -< 2 -~ and 

(31) &,(e,)/& (e,) - a×(e,)M(e T") >= C'. 

Choose now m~ so that 2-'- '_-<g(2m')e~--<2 -~ and n~ 

S(2m'n,)/S(n,). 
f ( k ) / 2 m t  For every  integer i define the sequence /Y~ s~-~ by 

so that 2g(2'~') -> 

[e,/( ( , ) )  j e, k = l , 2 , . . - ,  yl k~= S n ..,/,1 2 m, 
t =1, + ( k  -- I )nl + I 
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where 

, - I  

l, = ~ 2"mi i = 2 ,3 , " "  
j = l  

and !, =0 .  Now IlyI~'ll = e,, k = 1 ,2 , . . . , 2" ,  and 

2m 

I I ~ --- Ylk'l I = e,(S(2~'n,)) ' /S(n,)  " ~ e, (g (2'~' )) u" ~ (  2-')'/p. 
k - I  

Thus 
2m i 

]l ~---  Y~k'lt--- ~-( 2-').'p < o o  
i = I  k ~ l  / = 1  

and therefore the series 
2m i 

X Y. Y~*' 

converges unconditionally. By a theorem of Kadec [5] this implies that 
2m~ 

i = 1  k ~ l  

But by (31) 

a contradiction. 

2m t 

~:<(I I yl~'l [) = 2 ,~x(~,) ~ 2"'C'[M(e :") 
k=l 

>- 2",C' /M(g(2  m,) .2') >=2",C' /C 'M(g(2" , ) )  = 1, 

THEOREM 4. Let f (x  ) be a function defined on [0, 1 ], and let p >= 2. Necessary 

and su~icient conditions for f (e  ~) to be equivalent to the modulus of  convexity 

of  some Lorentz sequence space d (a ,p )  are: 

(i) f(0) = 0 and f ( x )  is equivalent to an increasing convex function, 

(ii) There exists a constant C >0  such that for all 0 < A,T/ < 1 f(Ar/)_--> 

cf (x  )f(n ). 

PROOF. The conditions are necessary. By Theorem 2, 8(e) ,  the modulus of 

convexity of d (a ,p )  (oc > p >_ 2), is equivalent to the function f (e  p) where 

(32) f ( e  ) = M(e  -t)-, .  

By the properties of  the function g ( x ) - - M - ~ ( x )  defined by (10), it is easily 

checked that [(x)  is equivalent to an increasing convex function satisfying the 

A2 condition for small values of x. Hence (i) holds. Notice also that by (10) for 

all n,m = 1,2,. .-  
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(33) g(2m2 ") = inf (S(2m2"k) /S(k))  
k 

>= inf (S(2m2"k )/S(2"k ))inf (S(2"k )/S(k )) >= g(2" )g(2"). 
k k 

Since g is concave there exists therefore  a C~ > 0 such that for all x,y, _--- 1 

(34) g(x y ) >- C,g(x )g(y ) 

and this implies that (ii) holds. Conversely,  let f(x)  be an increasing convex 

function on [0, 1], satisfying f(0) = 0. Define h(x) = (f(x-'))-' (! =< x < ~). Since 

[(x)/x is increasing the same is true for h(x)/x. By (ii) we have h(xy)<= 
C2h(x)h(y) (1 =< x,y < ~) and thus in particular h satisfies the A2 condition on 

[i,oo). Hence by Lemma 6 (I), h(x) is equivalent to an increasing convex 

function u(x) on [1,~) with u( l )  = 1. Define now S(x)  = u-~(x) and 

1 n = l  
(35) a, = S ( n ) - S ( n - 1 )  n > l ,  n E N .  

Since S ( x ) =  u '(x) is a concave function, it follows that the sequence a, 

decreases to 0. Also by (ii), S (xy)  _>- C3S(x)S(y) for  x,y => i, and hence g(x) 
defined by (10) is equivalent to S(x). By our construction of S(x)  it follows 

therefore  that the modulus of convexi ty  of d (a,p) where {a, } are given by (35) 

is equivalent to [(eP) where [ is the given function. 
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