

# UNIFORM CONVEXITY IN LORENTZ SEQUENCE SPACES

BY

Z. ALTSHULER<sup>†</sup>

## ABSTRACT

Necessary and sufficient conditions for Lorentz sequence spaces  $d(a, p)$  ( $1 < p < \infty$ ), to be uniformly convexifiable are given. In case  $p \geq 2$  the modulus of convexity is calculated.

Let  $1 \leq p < \infty$ , for any  $a = \{a_1, a_2, \dots\} \in c_0 \setminus l_1$ ,  $1 = a_1 \geq a_2 \geq \dots \geq 0$ , let

$$d(a, p) = \{x = \{\alpha_i\} \in c_0; \quad \|x\| = \left( \sup_{\sigma \in \pi} \sum_{i=1}^{\infty} |\alpha_{\sigma(i)}|^p a_i \right)^{1/p} < \infty\}$$

where  $\pi$  is the set of all permutations of the natural numbers. The space  $d(a, p)$  is a Banach space called Lorentz sequence space. For basic properties of Lorentz sequence spaces we refer the reader to [1, 2].

We recall that a Banach space  $X$  is called uniformly convex if for every  $\varepsilon > 0$  there exists  $\delta_X(\varepsilon) > 0$  such that  $\delta_X(\varepsilon) = \inf(1 - \|x + y\|/2)$ , where the infimum is taken over all  $x, y \in X$  satisfying  $\|x\|, \|y\| \leq 1$  and  $\|x - y\| \geq \varepsilon$ . The function  $\delta_X(\varepsilon)$  is called the modulus of convexity of  $X$ . A Banach space  $(X, \|\cdot\|)$  is called uniformly convexifiable if there exists an equivalent norm  $\|\cdot\|_1$  such that  $(X, \|\cdot\|_1)$  is uniformly convex.

A necessary and sufficient condition for uniform convexity of Lorentz function spaces was already given by Halperin [4]. We begin by reproducing here the argument of Halperin in the special case of Lorentz sequence spaces. Our first result, Theorem 1, is to a large extent (mainly the equivalence I  $\Leftrightarrow$  III) already contained in [4].

<sup>†</sup> This is part of the author's Ph.D. Thesis prepared at the Hebrew University of Jerusalem, under the supervision of Professor L. Tzafriri. I wish to thank Professor Tzafriri and Professor J. Lindenstrauss for their interest and advice.

Received May 20, 1974

Our main result here is Theorem 2. In it we evaluate (up to a bounded factor) the value of  $\delta_X(\varepsilon)$  in terms of  $S(n) = \sum_{i=1}^n a_i$  in the case  $p \geq 2$ . Theorem 3 shows (again in the case  $p \geq 2$ ) that the asymptotic formula we get for the modulus of convexity in Theorem 2 cannot be improved by passing to an equivalent norm. That is, if  $Y$  is a space isomorphic to  $X$  then  $\delta_Y(\varepsilon) \leq A\delta_X(\varepsilon)$  for some constant  $A$  independent of  $\varepsilon$ . Our final result, Theorem 4, characterizes all the functions  $\delta(\varepsilon)$  which are equivalent to the modulus of convexity of some Lorentz sequence space  $d(a, p)$  with  $p \geq 2$ .

We say that the function  $u(x)$  satisfies the  $\Delta_2$  condition for large values of  $x$ , if there exists an  $x_0 > 0$  and a constant  $C > 0$  such that  $u(2x) \leq Cu(x)$  for all  $x \geq x_0$ . Two functions  $f(x)$  and  $g(x)$  defined on some set  $K$  of reals are called equivalent, (denoted by  $f \sim g$ ), if there exist constants  $A, B > 0$  such that  $Bg(x) \leq f(x) \leq Ag(x)$  for all  $x \in K$ .

In the sequel we denote by  $\{e_n\}_{n=1}^\infty$  the natural unit vector basis of the Lorentz sequence space  $d(a, p)$ . For notions in general Banach space theory we follow the terminology of [6].

**THEOREM 1.** *Let  $d(a, p)$  ( $1 < p < \infty$ ) be a Lorentz sequence space. The following conditions are equivalent:*

- I)  $d(a, p)$  is uniformly convex.
- II)  $d(a, p)$  is uniformly convexifiable.
- III)  $\inf_n S(2n)/S(n) = k > 1$ .
- IV)  $S(n)/n \sim a_n$ .

The proof of the equivalence III  $\Leftrightarrow$  IV is immediate:

III  $\Leftrightarrow$  IV: If  $\inf_n S(2n)/S(n) = k > 1$ , then

$k - 1 \leq (S(2n) - S(n))/S(n) \leq na_n/S(n)$ , and

hence:

$$a_n \leq S(n)/n \leq (k - 1)^{-1}a_n.$$

Conversely, if  $S(n)/n \sim a_n$ . then

$$1 \leq S(2n)/S(n) \leq C \cdot 2na_{2n}/na_n,$$

which implies that  $a_{2n}/a_n \geq (2C)^{-1}$ , It follows that:

$$(S(2n) - S(n))/S(n) \geq na_{2n}/Cna_n \geq (2C^2)^{-1},$$

and thus  $S(2n)/S(n) \geq 1 + (2C^2)^{-1}$ .

To prove the equivalences I  $\Leftrightarrow$  II  $\Leftrightarrow$  III we need some lemmas.

LEMMA 1. *Let  $\{x_n\}$  be an unconditional basis of a Banach space  $X$  with an unconditional constant 1. Then  $X$  is uniformly convex if and only if for every  $\theta > 0$  and every  $1 > \eta > 0$  there exists a  $\delta_1(\eta, \theta) > 0$  such that the following holds: If  $x = \sum \alpha_i x_i$ ,  $y = \sum \beta_i x_i \in X$ ,  $\|x\|, \|y\| \leq 1$  satisfy  $\|\sum_{i \in E} \alpha_i x_i\| \geq \theta$  where  $E = \{i; (1 - \eta)|\alpha_i| \geq |\beta_i|\}$  then  $\|(x + y)/2\| \leq 1 - \delta_1(\eta, \theta)$ .*

PROOF. Suppose  $X$  is uniformly convex and let  $\delta_X(\varepsilon)$  be its modulus of convexity. If  $x$  and  $y$  are as in the statement of the lemma then

$$\|x - y\| \geq \left\| \sum_{i \in E} (\alpha_i - \beta_i) x_i \right\| \geq \eta \left\| \sum_{i \in E} \alpha_i x_i \right\| \geq \eta \theta$$

and hence  $\|(x + y)/2\| \leq 1 - \delta_X(\eta \theta)$ . To prove the converse, notice that it is enough to show that for every  $\varepsilon > 0$   $\inf(1 - \|(x + y)/2\|) > 0$  where the inf is taken over all  $x = \sum \alpha_i x_i$ ,  $y = \sum \beta_i x_i$  satisfying  $\|x\| \leq 1$ ,  $\|y\| \leq 1$ ,  $\|x - y\| \geq \varepsilon$  and  $\alpha_i, \beta_i \geq 0$  for all  $i = 1, 2, \dots$ . To see this, let

$$A = \{i; \alpha_i \beta_i < 0\} \quad B = \{i; i \in A \quad |\alpha_i| \geq |\beta_i|\} \quad \text{and}$$

$$C = \{i; i \in A, \quad |\alpha_i| < |\beta_i|\}.$$

Define

$$\alpha'_i = \begin{cases} 0 & i \in C \\ |\alpha_i| & \text{otherwise} \end{cases} \quad \beta'_i = \begin{cases} 0 & i \in B \\ |\beta_i| & \text{otherwise} \end{cases}$$

and  $x' = \sum \alpha'_i x_i$ ,  $y' = \sum \beta'_i x_i$ . It is easily checked that  $\|x'\|, \|y'\| \leq 1$ ,  $\|x + y\| \leq \|x' + y'\|$  and  $\|x' - y'\| \geq \|x - y\|/2$ .

Assume now that a suitable  $\delta_1(\eta, \theta)$  exists and that  $x$  and  $y$  are vectors with norm 1 satisfying  $\|x - y\| > \varepsilon$  and having non-negative coefficients  $\alpha_i, \beta_i$ . Put  $G = \{i; \alpha_i \geq \beta_i\}$  and  $F = \{i; \alpha_i \leq \beta_i\}$ . Since  $\|x - y\| \geq \varepsilon$  either  $\|\sum_{i \in G} (\alpha_i - \beta_i) x_i\| \geq \varepsilon/2$  or  $\|\sum_{i \in F} (\alpha_i - \beta_i) x_i\| > \varepsilon/2$ , and we may clearly assume that the first case holds. Let  $H = \{i, (1 - \varepsilon/4)\alpha_i \geq \beta_i\}$ . Then for all  $i \in G \setminus H$ ,  $\alpha_i - \beta_i \leq \varepsilon \alpha_i/4$  and hence  $\|\sum_{i \in G \setminus H} (\alpha_i - \beta_i) x_i\| \leq \|\varepsilon/4 \sum_{i \in G \setminus H} \alpha_i x_i\| \leq \varepsilon/4$ . Consequently  $\|\sum_{i \in H} (\alpha_i - \beta_i) x_i\| \geq \|\sum_{i \in H} (\alpha_i - \beta_i) x_i\| \geq \varepsilon/4$ .

From the definition of  $\delta_1(\eta, \theta)$ , it follows that  $\|(x + y)/2\| \leq 1 - \delta_1(\varepsilon/4, \varepsilon/4)$  and hence  $X$  is uniformly convex.

LEMMA 2. *Let  $\{a_n\}_{n=1}^\infty$  be a decreasing sequence of positive numbers. Assume that  $\inf_n S(2n)/S(n) = k > 1$  where  $S(n) = \sum_{i=1}^n a_i$ . Then*

- $$(1) \quad S(2^m n)/S(n) \geq k^m \quad n, m = 1, 2, \dots$$
- $$(2) \quad (S(2^m n) - S((2^m - 1)n))/S(n) \geq (k/2)^m (k - 1) \quad n, m = 1, 2, \dots$$

PROOF. (1) Obvious, by induction on  $m$ .

$$\begin{aligned} (2) \quad & (S(2^m n) - S((2^m - 1)n))/S(n) \\ &= (S(2^m n)/S(n)) (S(2^m n) - S((2^m - 1)n))/S(2^m n) \\ &\geq k^m \cdot 2^{-m} \cdot (S(2^{m+1} n) - S(2^m n))/S(2^m n) \geq (k/2)^m (k - 1). \end{aligned}$$

LEMMA 3. Let  $d(a, p)$  be a Lorentz sequence space with  $\inf_n S(2n)/S(n) = k > 1$  and let  $\varepsilon > 0$ . Let  $\{h_i\}_{i=1}^n$  be a decreasing sequence of non-negative reals satisfying:

$$(3) \quad \sum_{i=1}^n h_i a_i \leq 1.$$

Assume also that  $\{h_{i_j}\}_{j=1}^r$  is a subsequence of  $\{h_i\}_{i=1}^n$  for which

$$(4) \quad \left| \left| \sum_{j=1}^r h_{i_j}^{1/p} e_j \right| \right|^p = \sum_{j=1}^r h_{i_j} a_j \geq \varepsilon^p.$$

Then

$$(5) \quad \sum_{j=1}^r h_{i_j} a_{i_j} \geq C \varepsilon^{p/\log_2 k}$$

where  $C$  is some constant dependent only on  $k$ .

PROOF. Let  $A = \{j ; i_j > 2^{(m-1)}j\}$ ,  $B = \{j ; i_j \leq 2^{(m-1)}j\}$  where  $m = \log_2(4\varepsilon^{-p})/\log_2 k$ , and put

$$\beta_j = h_{i_j} - h_{i_{j+1}} \quad j = 1, 2, \dots, r-1 \quad \beta_r = h_{i_r}.$$

We have

$$\begin{aligned} (6) \quad 1 &\geq \sum_{i=1}^n h_i a_i \geq \sum_{j=1}^r \beta_j \left( \sum_{k=1}^{i_j} a_k \right) \geq \sum_{j \in A} \beta_j S(i_j) \\ &\geq k^{(m-1)} \sum_{j \in A} \beta_j S(j) \geq (k^m/2) \sum_{j \in A} \beta_j S(j). \end{aligned}$$

Hence  $\sum_{j \in A} \beta_j S(j) \leq 2k^{-m} = \varepsilon^p/2$ . By (4) we get that  $\sum_{j \in B} \beta_j S(j) \geq \varepsilon^p/2$ . Consequently

$$(7) \quad \sum_{j=1}^r h_j a_{i_j} = \sum_{j=1}^r \beta_j \left( \sum_{k=1}^j a_{i_k} \right) \geq \sum_{j \in B} \beta_j (S(2^{[m]} j) - S((2^{[m]} - 1)j))$$

$$\geq (k/2)^{[m]} (k-1) \sum_{j \in B} \beta_j S(j) \geq (k/2)^m (k-1) \varepsilon^p / 2 \geq C \varepsilon^{p/\log_2 k}.$$

**LEMMA 4.** *Let  $\{x_n\}$  be a symmetric basis of a Banach space  $X$ . Assume that there exist increasing sequences of integers  $\{n_i\}_{i=1}^\infty, \{k_i\}_{i=1}^\infty$  and a constant  $M$  such that  $\sup_i \lambda(n_i k_i) / \lambda(n_i) \leq M$  where  $\lambda(n) = \|\sum_{i=1}^n x_i\|$ . Then  $X$  is not uniformly convexifiable.*

**PROOF.** By [3] it is enough to construct  $k_i$  dimensional subspaces  $V_i$  of  $X$  which are uniformly isomorphic to  $l_\infty^{k_i}$ . Fix  $i$  and let

$$v_m = \sum_{j=(m-1)n_i+1}^{mn_i} y_j / \lambda(n_i) \quad m = 1, 2, \dots, k_i.$$

For any sequence of scalars  $\{\alpha_m\}_{m=1}^{k_i}$  we get

$$\sup_{1 \leq m \leq k_i} |\alpha_m| \leq \left\| \sum_{m=1}^{k_i} \alpha_m v_m \right\| \leq \sup_{1 \leq m \leq k_i} |\alpha_m| \left\| \sum_{m=1}^{k_i} v_m \right\|$$

$$\leq \sup_{1 \leq m \leq k_i} |\alpha_m| \cdot \lambda(n_i k_i) / \lambda(n_i) \leq M \sup_{1 \leq m \leq k_i} |\alpha_m|.$$

Hence,  $d([v_m]_{m=1}^{k_i}, l_\infty^{k_i}) \leq M$ .

**LEMMA 5.** *Let  $\{a_n\} \in c_0 \setminus l_1$ ,  $a_1 \geq a_2 \geq \dots \geq 0$ . If  $\inf_n S(2n)/S(n) = 1$ , where  $S(n) = \sum_{i=1}^n a_i$ , then for every  $\varepsilon > 0$  there exist sequences of integers  $\{n_i\}_{i=1}^\infty, \{k_i\}_{i=1}^\infty$  such that  $S(n_i k_i)/S(n_i) \leq 1 + \varepsilon$ .*

**PROOF.** Fix  $\varepsilon > 0$ . By hypothesis there exists a sequence  $n_i$  such that  $S(2n_i)/S(n_i) < 1 + 2^{-i}$ . Let  $k_i = i$ . Then

$$S(k_i n_i)/S(n_i) = 1 + \sum_{l=2}^i (S(l n_i) - S((l-1) n_i)) / S(n_i)$$

$$\leq 1 + (i-1) (S(2n_i) - S(n_i)) / S(n_i) \leq 1 + (i-1) 2^{-i} \leq 1 + \varepsilon,$$

provided  $i$  is large enough.

PROOF OF THEOREM 1. Clearly  $\text{I} \Rightarrow \text{II}$ . If  $\inf_n S(2n)/S(n) = 1$ , then by Lemmas 4 and 5  $d(a, p)$  is not uniformly convexifiable, hence  $\text{II} \Rightarrow \text{III}$ .

$\text{III} \Rightarrow \text{I}$ . Let  $\theta > 0$  and  $0 < \eta < 1$  be given. By Lemma 1, it is enough to show that there exists a  $\delta_1(\eta, \theta) > 0$  such that if  $x = \sum_{i=1}^{\infty} \alpha_i e_i$ ,  $y = \sum_{i=1}^{\infty} \beta_i e_i$ ,  $\|x\|$ ,  $\|y\| \leq 1$ ,  $\|\sum_{i \in E} \alpha_i x_i\| \geq \theta$  where  $E = \{i; (1-\eta)|\alpha_i| \geq |\beta_i|\}$ , we have  $\|(x+y)/2\|^p \leq 1 - \delta_1(\eta, \theta)$ . Also as noted in the proof of Lemma 1, we may assume without loss of generality that  $\alpha_i, \beta_i \geq 0$  and  $x = \sum_{i=1}^n \alpha_i e_i$ ,  $y = \sum_{i=1}^n \beta_i e_i$  for some  $n < \infty$ . Notice that for  $1 < p < \infty$  and  $0 < \eta < 1$ , we have  $0 < \eta' < 1$  such that for every  $a, b > 0$   $((a+b)/2)^p \leq (1-\eta')(a^p + b^p)/2$ , provided  $(1-\eta)a \geq b$ .

Define the sequence  $\{h_i\}_{i=1}^n$  by

$$h_i = \begin{cases} (1-\eta')(\alpha_i^p + \beta_i^p)/2 & i \in E \\ ((\alpha_i + \beta_i)/2)^p & i \notin E \end{cases}.$$

We may assume, without loss of generality that  $\{h_i\}_{i=1}^n$  is a decreasing sequence. Indeed let  $\sigma$  be the permutation such that  $\{h_{\sigma(i)}\}_{i=1}^n$  is decreasing and let  $x' = \sum_{i=1}^n \alpha_{\sigma(i)} e_i$ ,  $y' = \sum_{i=1}^n \beta_{\sigma(i)} e_i$ , then clearly  $\|x'\|$ ,  $\|y'\| \leq 1$ ,  $\|x' - y'\| = \|x - y\|$  and  $\|x' + y'\| = \|x + y\|$ . Now

$$\begin{aligned} & \sum_{i=1}^n h_i a_i + \eta'(1-\eta')^{-1} \sum_{i \in E} h_i a_i \\ &= \sum_{i \notin E} h_i a_i + (1 + \eta'(1-\eta')^{-1}) \sum_{i \in E} h_i a_i \\ &\leq \sum_{i=1}^n (\alpha_i^p + \beta_i^p) a_i / 2 \leq (\|x\|^p + \|y\|^p) / 2 \leq 1. \end{aligned}$$

Since  $h_i^{1/p} \geq (\alpha_i + \beta_i)/2$  for every  $i$ , we get that

$$\sum_{i=1}^n h_i a_i = \left\| \sum_{i=1}^n h_i^{1/p} e_i \right\|^p \geq \left\| \sum_{i=1}^n [(\alpha_i + \beta_i)/2] e_i \right\|^p = \|(x+y)/2\|^p$$

and hence

$$(8) \quad \|(x+y)/2\|^p \leq 1 - \eta'(1-\eta')^{-1} \sum_{i \in E} h_i a_i.$$

Let  $E = \{i_j\}_{j=1}^r$ . Since for  $i \in E$  we have

$$h_i^{1/p} = ((1 - \eta')/2)^{1/p} (\alpha_i^p + \beta_i^p)^{1/p} \geq ((1 - \eta')/2)^{1/p} \alpha_i,$$

it follows that

$$\sum_{i=1}^r h_i a_i = \left\| \sum_{i \in E} h_i^{1/p} e_i \right\|^p \geq C_1 \left\| \sum_{i \in E} \alpha_i e_i \right\|^p \geq C_1 \theta^p.$$

Consequently, by Lemma 3,

$$\sum_{i=1}^r h_i a_i = \sum_{i \in E} h_i a_i \geq C_2 \theta^{p/\log_2 k}$$

and hence by (8)  $\|(x + y)/2\|^p \leq 1 - C_3 \eta' \theta^{p/\log_2 k}$ . This proves the existence of a suitable  $\delta_1(\eta, \theta)$ .

**REMARK 1.** All Lorentz sequence spaces  $d(a, p)$  ( $1 < p < \infty$ ) are strictly convex.

**PROOF.** Let  $x = \sum \alpha_i e_i$ ,  $y = \sum \beta_i e_i \in d(a, p)$ ,  $\|y\| = \|x\| = 1$  and  $\|(x + y)/2\| = 1$ . Assume that the sequence  $|\alpha_i + \beta_i|$  is arranged in decreasing order. Then

$$\begin{aligned} 1 &= \|(x + y)/2\|^p = \sum (|\alpha_i + \beta_i|/2)^p a_i \leq (\sum |\alpha_i|^p a_i + \sum |\beta_i|^p a_i)/2 \\ &\leq (\|x\|^p + \|y\|^p)/2 \leq 1. \end{aligned}$$

For this inequality to become an equality we must have  $\alpha_i = \beta_i$  for all  $i$ , that is  $x = y$ .

**THEOREM 2.** Let  $d(a, p)$  ( $2 \leq p < \infty$ ) be a Lorentz sequence space, satisfying  $\inf_n S(2n)/S(n) = k > 1$ . Then there exist constants  $A_p, B_p > 0$  such that for all  $0 < \varepsilon < 1$

$$(9) \quad B_p (M(\varepsilon^{-p}))^{-1} \leq \delta(\varepsilon) \leq A_p (M(\varepsilon^{-p}))^{-1},$$

where  $\delta(\varepsilon)$  is the modulus of convexity of  $d(a, p)$  and  $M(x)$  is the inverse function of the function  $g(x)$  defined by

$$(10) \quad g(x) = \begin{cases} 0 & x = 0 \\ \inf_n S(2^m n)/S(n) & x = 2^m \quad m = 0, 1, 2, \dots \\ & \text{linearly on each interval of the form } (2^m, 2^{m+1}). \end{cases}$$

Before proving the theorem we make some simple observations concerning the function  $g$ . Since

$$(11) \quad g(2^m) = \inf_n S(2^m n)/S(n) \leq \inf_n S(2^{m+1} n)/S(n) = g(2^{m+1}),$$

$g(x)$  is an increasing function which satisfies  $g(2^m) \geq k^m$ . Now since

$$(12) \quad \begin{aligned} g(2^m)/2^m &= \inf_n (S(2^m n)/2^m S(n)) \geq \inf_n (S(2^{m+1} n)/2^{m+1} S(n)) \\ &= g(2^{m+1})/2^{m+1}, \end{aligned}$$

we get that  $g(2^m)/2^m$  is a decreasing function of  $m$ , and therefore  $g(x)/x$  is a decreasing function of  $x$  on  $[1, \infty)$ . Hence  $M(x)/x$  is an increasing function of  $x$ , where  $M(x) = g^{-1}(x)$ . Moreover

$$(13) \quad \begin{aligned} g(2^{m+1})/g(2^m) &= \left( \inf_n S(2^{m+1} n)/S(n) \right) / \left( \inf_n S(2^m n)/S(n) \right) \\ &\geq \inf_n \left( S(2^m 2n)/S(2n) \right) \left( \inf_n S(2n)/S(n) \right) / \left( \inf_n S(2^m n)/S(n) \right) \geq k > 1. \end{aligned}$$

Hence  $g(2x)/g(x) \geq k > 1$  for all  $x > 0$ . In that case  $M(kx)/M(x) \leq 2$  for all  $x > 0$ , which is equivalent to the  $\Delta_2$  condition. In the sequel we shall need also the following lemma.

LEMMA 6. *Let  $f(x)$  be a function satisfying the  $\Delta_2$  condition for  $x \geq 1$  such that  $f(x)/x$  is increasing. Then*

- I) *There exists a convex function  $u(x)$  which is equivalent to  $f(x)$  on  $[1, \infty)$ .*

II) *There exists a convex function  $v(x)$  which is equivalent to  $w(x) = (f(x^{-1}))^{-1}$  on  $(0, 1]$ .*

PROOF. I. Define the function  $u(x) = \int_0^x \sup_{0 < t \leq v} f'(t) dv$ . Clearly  $u(x)$  is convex, and  $u(x) \geq f(x)$  for all  $x \geq 1$ . Since the  $\Delta_2$  condition is equivalent to the condition  $xf'(x)/f(x) \leq A$  for all  $x \geq 1$  and some constant  $A$ , we get that:

$$u(x) \leq A \int_0^x \left( \sup_{0 < t \leq v} f(t)/t \right) dv \leq A \int_0^x (f(v)/v) dv \leq Af(x)$$

for all  $x \geq 1$ .

Part II is proved by a similar argument. The function  $v$  is defined by

$$v(x) = \int_0^x \sup_{0 < t \leq v} w'(t) dv.$$

Since

$$(14) \quad S(2^m n)/S(n) \geq g(2^m) \quad \text{for all } n, m = 1, 2, \dots$$

the proof of Lemma 2 shows that

$$(15) \quad (S(2^m n) - S((2^m - 1)n))/S(n) \geq g(2^m)2^{-m}(k - 1) \quad n, m = 1, 2, \dots$$

In view of these inequalities we can reformulate Lemma 3 as follows.

LEMMA 7. *Let  $d(a, p)$  be a Lorentz sequence space with  $\inf_n S(2n)/S(n) = k > 1$ , and let  $\varepsilon > 0$ . Let  $\{h_i\}_{i=1}^n$  be a decreasing sequence, and  $\{h_{i_j}\}_{j=1}^r$  a subsequence of  $\{h_i\}_{i=1}^n$  satisfy (3) and (4), then*

$$(16) \quad \sum_{j=1}^r h_{i_j} a_{i_j} \geq C(M(\varepsilon^{-p}))^{-1}$$

where  $M(x) = g^{-1}(x)$ ,  $g(x)$  is defined by (10), and  $C > 0$  is some constant.

PROOF. Let  $A$  and  $B$  be as in the proof of Lemma 3, where  $m$  is a real number chosen so that

$$(17) \quad g(2^m) = 4\varepsilon^{-p}.$$

By (14) the same computation as that in (6) shows that  $\sum_{i \in A} \beta_i S(i) \leq 2(g(2^m))^{-1} = \varepsilon^p/2$ . Hence by (15) the same computation as that in (7) gives

$$\sum_{i=1}^r h_{i_j} a_{i_j} \geq (k-1)g(2^m) \cdot 2^{-m} \cdot \varepsilon^p / 2 \geq (k-1)2^{-m} \geq C(M(\varepsilon^{-p}))^{-1}.$$

We denote by  $C_i > 0$   $i = 1, 2, \dots$  the constants which will appear in the sequel.

PROOF OF THEOREM 2. We show first that  $\delta(\varepsilon) \geq B_p(M(\varepsilon^{-p}))^{-1}$ . Let  $x, y \in d(a, p)$ ,  $\|x\| = \|y\| = 1$  and  $\|x - y\| \geq \varepsilon$ ,  $0 < \varepsilon < 1$ . As we have seen in the proof of Lemma 1, we may assume, without loss of generality, that  $x = \sum_{i=1}^t \alpha_i e_i$ ,  $y = \sum_{i=1}^t \beta_i e_i$  for some  $t < \infty$ , that  $\alpha_i, \beta_i \geq 0$  for all  $i$ , and that  $\|\sum_{i \in H} (\alpha_i - \beta_i) e_i\| \geq \varepsilon/4$  where  $H = \{i; (1 - \varepsilon/4)\alpha_i \geq \beta_i\}$ . Let  $n = [-\log \varepsilon]$  and  $\eta_k = \varepsilon^{1-k/n}/4$ ,  $k = 0, 1, \dots, n$ . Notice that if  $(1 - \eta_k)a \geq b$ ,  $1 > \eta_k > 0$ ,  $a, b > 0$  then

$$(18) \quad ((a + b)/2)^p \leq (1 - \eta_k)(a^p + b^p)/2$$

where  $\eta'_k$  is given by

$$(19) \quad \eta'_k = 1 - 2^{1-p} (2 - \eta_k)^p (1 + (1 - \eta_k)^p)^{-1} = C_1 \eta_k^2 + O(\eta_k^3).$$

Define  $H_k$ ,  $k = 0, 1, \dots, n$  by

$$(20) \quad H_k = \{i; (1 - \eta_{k+1})\alpha_i < \beta_i \leq (1 - \eta_k)\alpha_i\} \quad k = 0, 1, \dots, n-1.$$

$$H_n = \{i; 0 < \beta_i \leq 3/4\alpha_i\}$$

and put  $\varepsilon_k = \|\sum_{i \in H_k} (\alpha_i - \beta_i) e_i\|$ ,  $k = 0, \dots, n$ . Clearly

$$(21) \quad \sum_{k=0}^n \varepsilon_k^p \geq (\varepsilon/4)^p \quad \text{and} \quad \bigcup_{k=0}^n H_k = H.$$

Now either

$$(22) \quad \left\| \sum_{i \in H_n} (\alpha_i - \beta_i) e_i \right\| \geq \varepsilon/8$$

or

$$(23) \quad \left\| \sum_{\substack{i=1 \\ i \in \bigcup H_k \\ k=0}}^{n-1} (\alpha_i - \beta_i) e_i \right\| \geq \varepsilon/8.$$

If (22) holds, define the sequence  $\{h_i\}_{i=1}^t$  by

$$h_i = \begin{cases} (1 - \eta'_n)(\alpha_i^p + \beta_i^p)/2 & i \in H_n \\ ((\alpha_i + \beta_i)/2)^p & i \notin H_n \end{cases}.$$

As we remarked in the proof of Theorem 1 there is no loss of generality to assume that  $\{h_i\}_{i=1}^t$  is a decreasing sequence. We have

$$(24) \quad \begin{aligned} \|(x + y)/2\|^p &\leq \left\| \sum_{i=1}^t h_i^{1/p} e_i \right\|^p \\ &= \sum_{i=1}^t h_i a_i \leq (\|x\|^p + \|y\|^p)/2 - \eta'_n (1 - \eta'_n)^{-1} \sum_{i \in H_n} h_i a_i. \end{aligned}$$

Since  $\eta_n = 1/4$ ,  $\eta'_n$  is a constant independent of  $\varepsilon$ , and since  $h_i \geq (1 - \eta'_n)\alpha_i^p/2$  we get that

$$(25) \quad \left\| \sum_{i \in H_n} h_i^{1/p} e_i \right\|^p \geq C_2 \left\| \sum_{i \in H_n} \alpha_i e_i \right\|^p \geq C_3 \varepsilon^p.$$

Using Lemma 7 with  $\{h_i\}_{i \in H_n}$  as  $\{h_i\}_{i=1}^t$ , we deduce that  $\sum_{i \in H_n} h_i a_i \geq C_4 (M(\varepsilon^{-p}))^{-1}$ , and by (24)  $\|(x + y)/2\| \leq 1 - C_5 (M(\varepsilon^{-p}))^{-1}$ . If (23) holds, define the sequence  $\{h_i\}_{i=1}^t$  by

$$h_i = \begin{cases} (1 - \eta'_k)(\alpha_i^p + \beta_i^p)/2 & i \in H_k \quad k = 0, 1, \dots, n-1, \\ ((\alpha_i + \beta_i)/2)^p & \text{otherwise} \end{cases}$$

and assume that  $\{h_i\}_{i=1}^t$  is a decreasing sequence. Clearly

$$(26) \quad \|(x + y)/2\|^p \leq \left\| \sum_{i=1}^t h_i^{1/p} e_i \right\|^p \quad \text{and}$$

$$(27) \quad \sum_{i=1}^t h_i a_i + \sum_{k=0}^{n-1} \eta'_k (1 - \eta'_k)^{-1} \sum_{i \in H_k} h_i a_i \leq (\|x\|^p + \|y\|^p)/2 \leq 1.$$

Now fix  $k$ ,  $0 \leq k \leq n-1$ . For every  $i \in H_k$

$$\alpha_i - \beta_i \leq \eta_{k+1} \alpha_i \quad \text{hence}$$

$$(28) \quad h_i \geq (1 - \eta'_k) \alpha_i^p / 2 \geq (1 - \eta'_k) (\alpha_i - \beta_i)^p / 2 \eta'_{k+1}$$

consequently

$$(29) \quad \left\| \sum_{i \in H_k} h_i^{1/p} e_i \right\|^p \geq (1 - \eta'_k) 2^{-1} \eta'_{k+1} \left\| \sum_{i \in H_k} (\alpha_i - \beta_i) e_i \right\|^p.$$

Since  $\eta_{k+1} = \eta_k \varepsilon^{-1/n}$  and  $10 \geq \varepsilon^{-1/n} \geq 1$  provided  $\varepsilon \leq 10^{-1}$  we get that  $\left\| \sum_{i \in H_k} h_i^{1/p} e_i \right\| \geq C_6 \eta_k^{-p} \varepsilon_k^p$ . Hence by Lemma 7,

$$(30) \quad \sum_{i \in H_k} h_i a_i \geq C_7 (M(n_k^p \varepsilon_k^{-p}))^{-1}.$$

Using (19), (26), (27) and (30) we deduce that

$$\left\| (x + y)/2 \right\|^p \leq 1 - C_8 \sum_{k=0}^{n-1} \eta_k^2 (M(\eta_k^p \varepsilon_k^{-p}))^{-1}.$$

By Lemma 6 (II),  $(M(x^{-1}))^{-1}$  is equivalent to an increasing convex function  $G(x)$   $0 < x \leq 1$ . Using (21) and the facts that  $p \geq 2$  and  $\sum_{k=0}^{n-1} \eta_k^2 > \eta_{n-1}^2 \geq (\varepsilon^{1/n}/4)^2 \geq C_9$  we get that

$$\begin{aligned} \left\| (x + y)/2 \right\|^p &\leq 1 - C_{10} G \left( \sum_{k=0}^{n-1} \eta_k^{2-p} \varepsilon_k^p \right) \leq 1 - C_{11} G \left( \sum_{k=0}^{n-1} \varepsilon_k^p \right) \\ &\leq 1 - C_{12} G(\varepsilon^p) \leq 1 - C_{13} (M(\varepsilon^{-p}))^{-1}. \end{aligned}$$

This proves the first inequality in (9). To prove the other inequality in (9) let  $\varepsilon > 0$  and define  $x = \sum \alpha_i e_i$ ,  $y = \sum \beta_i e_i$ , by

$$\alpha_i = \begin{cases} (S(2^m n))^{-1/p} & i \leq 2^m n \\ 0 & i > 2^m n \end{cases} \quad \beta_i = \begin{cases} (S(2^m n))^{-1/p} & i \leq (2^m - 1)n \\ -(S(2^m n))^{-1/p} & (2^m - 1) < i \leq 2^m n \\ 0 & i > 2^m n \end{cases}$$

where  $2 \geq g(2^m) \varepsilon^p \geq 1$  and  $n$  is chosen such that  $2g(2^m n) \geq S(2^m n)/S(n)$ . Clearly  $\|x\| = \|y\| = 1$ ,  $\|x - y\|^p = 2^p S(n)/S(2^m n) \geq \varepsilon^p$  and  $\|(x + y)/2\|^p = (S((2^m - 1)n))/S(2^m n) = 1 - (S(2^m n) - S((2^m - 1)n))/S(2^m n) \geq 1 - 2^{-m} = 1 - C_{14} (M(\varepsilon^{-p}))^{-1}$ . This concludes the proof of the theorem.

Let  $d(a, p)$  be a Lorentz sequence space and suppose that there exists an  $n_0$  such that  $S(2n)/S(n)$  is an increasing function of  $n$  for  $n \geq n_0$ . Then for  $n > n_0$ ,  $S(2^m n)/S(n) \geq S(2^m n_0)/S(n_0) \geq S(2^m)/S(n_0)$ . Hence there exist constants  $A_1$  and  $A_2$  such that  $A_1 S(2^m) \geq g(2^m) \geq A_2 S(2^m)$ .

For example if  $a_n \sim n^{-\alpha} (\log n)^{-\beta}$  ( $0 \leq \alpha < 1, 0 \leq \beta$ ), then  $S(n) \sim n^{1-\alpha} (\log n)^{-\beta}$  and  $S(2n)/S(n)$  is an increasing function of  $n$ . Hence  $g(x) \sim x^{1-\alpha} (\log x)^{-\beta}$  and therefore  $M(x) = g^{-1}(x) \sim x^{1/(1-\alpha)} (\log x)^{\beta/(1-\alpha)}$ . Consequently,  $\delta(\varepsilon) \sim (M(\varepsilon^{-p}))^{-1} \sim \varepsilon^{p/(1-\alpha)} |\log \varepsilon|^{-\beta/(1-\alpha)}$ .

If the function  $S(2n)/S(n)$  is decreasing then

$$k = \inf_n S(2n)/S(n) = \lim_n S(2n)/S(n) \quad \text{and}$$

$$S(2^m n)/S(n) \geq k^m = (2^m)^{\log_2 k}.$$

Hence  $g(x)$  is equivalent to the function  $x^{\log_2 k}$ , and  $\delta(\varepsilon) \sim ((\varepsilon^{-p})^{1/\log_2 k})^{-1} = \varepsilon^{p/\log_2 k}$ . For example, if  $a_n \sim n^{-\alpha} (\log n)^\beta$  ( $0 \leq \alpha < 1, 0 < \beta$ ), then  $S(n) \sim n^{1-\alpha} (\log n)^\beta$  and  $S(2n)/S(n)$  is a decreasing function of  $n$ . Since  $\lim_n S(2n)/S(n) = 2^{1-\alpha}$  we get that  $\delta(\varepsilon) \sim \varepsilon^{p/(1-\alpha)}$ .

**THEOREM 3.** *Let  $X$  be a Banach space isomorphic to a Lorentz sequence space  $d(a, p)$  ( $p \geq 2$ ). Then there exists a constant  $A > 0$  such that  $\delta_X(\varepsilon)/\delta_d(\varepsilon) < A$  for all  $0 < \varepsilon < 1$ , where  $\delta_X(\varepsilon)$  and  $\delta_d(\varepsilon)$  are the moduli of convexity of  $X$  and  $d(a, p)$  respectively.*

**PROOF.** Define  $g(x)$  and  $M(x)$  as in Theorem 2. Since  $M(x)$  satisfies the  $\Delta_2$  condition for large  $x$  there is a constant  $C$  such that  $M(2x) \leq CM(x)$  for all  $x \geq 1$ . Suppose that the theorem is false. Then there would exist a sequence  $\{\varepsilon_i\}_{i=1}^\infty$  such that for every  $i$   $\varepsilon_i \leq 2^{-i}$  and

$$(31) \quad \delta_X(\varepsilon_i)/\delta_d(\varepsilon_i) \sim \delta_X(\varepsilon_i) M(\varepsilon_i^{-p}) \geq C^i.$$

Choose now  $m_i$  so that  $2^{-i-1} \leq g(2^{m_i}) \varepsilon_i^p \leq 2^{-i}$  and  $n_i$  so that  $2g(2^{m_i}) \geq S(2^{m_i} n_i)/S(n_i)$ .

For every integer  $i$  define the sequence  $\{y_i^{(k)}\}_{k=1}^{2^{m_i}}$  by

$$y_i^{(k)} = [\varepsilon_i / (S(n_i))^{1/p}] \sum_{t=l_i+(k-1)n_i+1}^{l_i+k n_i} e_t \quad k = 1, 2, \dots, 2^{m_i}$$

where

$$l_i = \sum_{j=1}^{i-1} 2^{m_j} n_j \quad i = 2, 3, \dots$$

and  $l_1 = 0$ . Now  $\|y_i^{(k)}\| = \varepsilon_i$ ,  $k = 1, 2, \dots, 2^{m_i}$  and

$$\left\| \sum_{k=1}^{2^{m_i}} \pm y_i^{(k)} \right\| = \varepsilon_i (S(2^{m_i} n_i))^{1/p} / S(n_i)^{1/p} \sim \varepsilon_i (g(2^{m_i}))^{1/p} \sim (2^{-i})^{1/p}.$$

Thus

$$\sum_{i=1}^{\infty} \left\| \sum_{k=1}^{2^{m_i}} \pm y_i^{(k)} \right\| \leq \sum_{i=1}^{\infty} (2^{-i})^{1/p} < \infty$$

and therefore the series

$$\sum_{i=1}^{\infty} \sum_{k=1}^{2^{m_i}} y_i^{(k)}$$

converges unconditionally. By a theorem of Kadec [5] this implies that

$$\sum_{i=1}^{\infty} \sum_{k=1}^{2^{m_i}} \delta_X(\|y_i^{(k)}\|) < \infty.$$

But by (31)

$$\begin{aligned} \sum_{k=1}^{2^{m_i}} \delta_X(\|y_i^{(k)}\|) &\geq 2^{m_i} \delta_X(\varepsilon_i) \geq 2^{m_i} C^i / M(\varepsilon_i^{-p}) \\ &\geq 2^{m_i} C^i / M(g(2^{m_i}) \cdot 2^i) \geq 2^{m_i} C^i / C^i M(g(2^{m_i})) = 1, \end{aligned}$$

a contradiction.

**THEOREM 4.** *Let  $f(x)$  be a function defined on  $[0, 1]$ , and let  $p \geq 2$ . Necessary and sufficient conditions for  $f(\varepsilon^p)$  to be equivalent to the modulus of convexity of some Lorentz sequence space  $d(a, p)$  are:*

- (i)  $f(0) = 0$  and  $f(x)$  is equivalent to an increasing convex function,
- (ii) There exists a constant  $C > 0$  such that for all  $0 < \lambda, \eta < 1$   $f(\lambda\eta) \geq Cf(\lambda)f(\eta)$ .

**PROOF.** The conditions are necessary. By Theorem 2,  $\delta(\varepsilon)$ , the modulus of convexity of  $d(a, p)$  ( $\infty > p \geq 2$ ), is equivalent to the function  $f(\varepsilon^p)$  where

$$(32) \quad f(\varepsilon) = M(\varepsilon^{-1})^{-1}.$$

By the properties of the function  $g(x) = M^{-1}(x)$  defined by (10), it is easily checked that  $f(x)$  is equivalent to an increasing convex function satisfying the  $\Delta_2$  condition for small values of  $x$ . Hence (i) holds. Notice also that by (10) for all  $n, m = 1, 2, \dots$

$$\begin{aligned}
 (33) \quad g(2^m 2^n) &= \inf_k (S(2^m 2^n k) / S(k)) \\
 &\geq \inf_k (S(2^m 2^n k) / S(2^n k)) \inf_k (S(2^n k) / S(k)) \geq g(2^m) g(2^n).
 \end{aligned}$$

Since  $g$  is concave there exists therefore a  $C_1 > 0$  such that for all  $x, y \geq 1$

$$(34) \quad g(x y) \geq C_1 g(x) g(y)$$

and this implies that (ii) holds. Conversely, let  $f(x)$  be an increasing convex function on  $[0, 1]$ , satisfying  $f(0) = 0$ . Define  $h(x) = (f(x^{-1}))^{-1}$  ( $1 \leq x < \infty$ ). Since  $f(x)/x$  is increasing the same is true for  $h(x)/x$ . By (ii) we have  $h(xy) \leq C_2 h(x) h(y)$  ( $1 \leq x, y < \infty$ ) and thus in particular  $h$  satisfies the  $\Delta_2$  condition on  $[1, \infty)$ . Hence by Lemma 6 (I),  $h(x)$  is equivalent to an increasing convex function  $u(x)$  on  $[1, \infty)$  with  $u(1) = 1$ . Define now  $S(x) = u^{-1}(x)$  and

$$(35) \quad a_n = \begin{cases} 1 & n = 1 \\ S(n) - S(n-1) & n > 1, \quad n \in \mathbb{N}. \end{cases}$$

Since  $S(x) = u^{-1}(x)$  is a concave function, it follows that the sequence  $a_n$  decreases to 0. Also by (ii),  $S(xy) \geq C_3 S(x) S(y)$  for  $x, y \geq 1$ , and hence  $g(x)$  defined by (10) is equivalent to  $S(x)$ . By our construction of  $S(x)$  it follows therefore that the modulus of convexity of  $d(a, p)$  where  $\{a_n\}$  are given by (35) is equivalent to  $f(\varepsilon^p)$  where  $f$  is the given function.

## REFERENCES

1. Z. Altshuler, P. G. Cassaza and Bor Luh Lin, *On symmetric basic sequences in Lorentz sequence spaces*, Israel J. Math. **15** (1973), 140–155.
2. P. G. Cassaza and Bor Luh Lin, *On symmetric basic sequences in Lorentz sequence spaces II*, Israel J. Math. **17** (1974), 191–218.
3. M. M. Day, *Reflexive Banach spaces not isomorphic to uniformly convex spaces*, Bull. Amer. Math. Soc. **47** (1941), 313–317.
4. I. Halperin, *Uniform convexity in function spaces*, Duke Math. J. **21** (1954), 195–204.
5. M. I. Kadec, *Unconditional convergence of series in uniformly convex spaces*, Uspehi Mat. Nauk (N. S.) **11** (1956), 185–190, (Russian).
6. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces*, Springer lectures Notes, No. 338, 1973.