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UNIFORM CONVEXITY IN LORENTZ
SEQUENCE SPACES

BY
Z. ALTSHULER'

ABSTRACT

Necessary and sufficient conditions for Lorentz sequence spaces d(a, D)
(1 <p <), to be uniformly convexifiable are given. In case p = 2 the modulus
of convexity is calculated.

Let1=p <wx,forany a ={ai,a,, - }Eco\L, 1 =a,Za,= -+ 20, let

d(a,p)={x ={a}Eco; ||x||= (sgp2'|aum|,,ai)up <
where 7 is the set of all permutations of the natural numbers. The space d(a,p)
is a Banach space called Lorentz sequence space. For basic properties of
Lorentz sequence spaces we refer the reader to [1,2].

We recall that a Banach space X is called uniformly convex if for every
€ >0 there exists 8x(¢) >0 such that 8x(e) = inf(1 —||(x + y)/2{|), where the
infimum is taken over all x,y € X satisfying ||x[[,||y||=1and ||x —y{|=e.
The function 8x(¢g) is called the modulus of convexity of X. A Banach space
(X,]] []) is called uniformly convexifiable if there exists an equivalent norm
[l 1| such that (X,|| || is uniformly convex.

A necessary and sufficient condition for uniform convexity of Lorentz
function spaces was already given by Halperin [4]. We begin by reproducing
here the argument of Halperin in the special case of Lorentz sequence spaces.
Our first result, Theorem 1, is to a large extent (mainly the equivalence I & 111)
already contained in [4].

* This is part of the author’s Ph.D. Thesis prepared at the Hebrew University of Jerusalem,
under the supervision of Professor L. Tzafriri. I wish to thank Professor Tzafriri and Professor J.
Lindenstrauss for their interest and advice.
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Our main resuit here is Theorem 2. In it we evaluate {up to a bounded factor)
the value of 8x(¢) interms of S(n) = Z{.,a; in the case p = 2. Theorem 3 shows
(again in the case p = 2) that the asymptotic formula we get for the modulus of
convexity in Theorem 2 cannot be improved by passing to an equivalent norm.
That is, if Y is a space isomorphic to X then 6y (¢) = Adx(e) for some constant
A independent of &. Our final result, Theorem 4, characterizes all the functions
8(e) which are equivalent to the modulus of convexity of some Lorentz
sequence space d(a,p) with p = 2.

We say that the function u(x) satisfies the A, condition for large values of x,
if there exists an xo >0 and a constant C >0 such that #(2x) = Cu(x) for all
X = xo. Two functions f(x) and g(x) defined on some set K of reals are called
equivalent, (denoted by f ~ g), if there exist constants A,B >0 such that
Bg(x)=f(x)=Ag(x) for all x € K.

In the sequel we denote by {e, }»-, the natural unit vector basis of the Lorentz
sequence space d(a,p). For notions in general Banach space theory we follow
the terminology of [6].

THEOREM 1. Let d(a,p) (1<p <) be a Lorentz sequence space. The
following conditions are equivalent :

I) d(a,p) is uniformly convex.

II) d(a,p) is uniformly convexifiable.

1D inf,S(2n)/S(n) =k > 1.

IV) S(n)/n ~ a..

The proof of the equivalence III & IV is immediate:
Ml < 1V: If inf,S(2n)/S(n) =k >1, then

k—-1=(SQ2n)—Sn))/S(n)=na./S(n), and
hence:
a, =S(n)n=wk -1 "a,.
Conversely, if S(n)/n ~ a,. then
1=52n)/S(n)=C -2naz,/na.,,
which implies that a,./a, = (2C)™', It follows that:
(S2n)—Sn))/S(n) = na,,/Cna, 2(2CH ™",
and thus S(2n)/S(n) =1+ Q2CH™\.

To prove the equivalences I < II & III we need some lemmas.
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Lemma 1. Let {x.} be an unconditional basis of a Banach space X with an
unconditional constant 1. Then X is uniformly convex if and only if for every
60 >0 and every 1>mn >0 there exists a 5(n,0) >0 such that the following
holds: If x =Zaxi, y =2Bx; €EX, ||x ||, ||y || =1 satisfy ||Ziceaix: || = 6 where
E={i;(0—n)|a:|=|B:]|} then [|(x +y)/2||=1-38:(n,0).

ProorF. Suppose X is uniformly convex and let 8x(¢) be its modulus of
convexity. If x and y are as in the statement of the lemma then

l1x=y112 11 3 e~ Bl ||| S aox || = 00

and hence ||(x + y)/2|| = 1— 8x(n8). To prove the converse, notice that it is
enough to show that for every £ >0 inf(1 —||(x + y)/2||) >0 where the inf is
taken over all x = Zax;, y = ZBx; satisfying |[x||=1,||y||=1L||x-y]||ze
and a;, B; =0 forall i =1,2,---. To see this, let

A={i;aB <0} B={i;i€A |a|Z|B]|} and

C={i;i€A, |a|<|Bl}.
Define
,={ 0 iecC B’-={ 0 i€B
@ |ai| otherwise ' [B:| otherwise

andx’' =Zaix,y’ =3g8x. Itis easily checked that | [x'|[,]|y'||=1,]|x +y|]|=
[lx+y'|| and [|x"=y’'[|z[[x —y[[/2.

Assume now that a suitable 8,(n, 8) exists and that x and y are vectors with
norm 1 satisfying ||x — y || > ¢ and having non-negative coefficients a;, 8i. Put
G={i;aszB} ad F={i;a;=B} Since ||x—y||Zze either
[|Ziec (i = Bi)xi||Z €/2 or ||Zier (e — Bi)xi||>€/2, and we may clearly as-
sume that the first case holds. Let H ={i,(1—¢/4)a, = B;}. Then for all
ieG\H, a—BiZcai/d and hence [ Zieo~m(ai — B)x: || =
|l€/4Ziconax: || =e/4. Consequently ||S;enaix; [1Z]|Zien (@ = B)xi | | =
£/4.

From the definition of 8,(n,0), it follows that ||(x + y)/2||=1-8.(c/4,¢/4)
and hence X is uniformly convex.

LemMa 2. Let {a.}n-1 be a decreasing sequence of positive numbers.
Assume that inf,S(2n)/S(n)=k >1 where S(n)=3"_,a. Then
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8] S2™n)/Sn)y=zk™ nm=12,---
2) SQ™"n)—SW2" - Dn)/S(n)z=k/)"(k - 1) nm=1,2,---

Proor. (1) Obvious, by induction on m.
(2) (S@™"n)—S(2" —Hn))/S(n)
=(8Q2™"n)/S(n) (SQ2"n) - S(2" — Hin))/S2"n)
Zk™-27"(SQ2""'n)~S2"n))/SQ"n) = (kD)™ (k —1).

LEMMA 3. Let d(a,p) be a Lorentz sequence space with inf,S(2n)/S(n)=
k>1 and let € >0. Let {hi}{-, be a decreasing sequence of non-negative reals
satisfying :

3) 2

II/\

Assume also that {h,};-. is a subsequence of {h}i- for which

@) HZW =2rlhi,a,§e".
Then
5) S h,a, = CePlow

=

where C is some constant dependent only on k.

Proor. Let A ={j;i; >2"}, B ={j;i; =2"'j} where m = logx(4e " )/log:k,
and put

szhi,_hi,»ﬂ j=1,2,“'r-] B,zh,'r.

We have

HV
IlV

® 12 Sha = 6 "

@)= SAS)

= k[’"’Z‘B;S(i)é(k'”/2);3j5(i)-
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Hence ;e BiS()=2k™™ = £°/2. By (4) we get that 3,;esB8,S(j) = £ /2. Conse-
quently

a) Sha, = 38 Sa) = TSN -S@ - i)

= (k/2)™(k - 1)2[3,-5(1‘) = (k/2)™(k — 1)e” 2 = CePMon,

LemMa 4. Let {x,} be a symmetric basis of a Banach space X. Assume that
there exist increasing sequences of integers {n;}i=,,{k:}i-1 and a constant M such
that sup;A(nk)/A(n)=M where A(n)=||Zi_,x;||. Then X is not uniformly
convexifiable.

ProoF. By [3] it is enough to construct k; dimensional subspaces V; of X
which are uniformly isomorphic to /& Fix i and let

mn.

= > WA m=12k

i=(m-—Nn;+1

For any sequence of scalars {am}ni-1 we get
k. k
Sup [an || 2 cmtn || = sup [an] |12 vl
1=m Sk m=1 1sm=sk; m=)

= sup |am | A(nk)/A(n) =M sup |an|.
m=sk;

t=m=k; is

Hence, d([vm -1, [X) =M.

LEMMA 5. Let {a.}Eco\l, a1z a,= - 20. If inf,S2n)/S(n) =1, where
S(n)==7.,a, then for every ¢ >0 there exist sequences of integers {n}i-, {ki}-\
such that S(nk)[S(n)=1+¢.

Proor. Fix & >0. By hypothesis there exists a sequence n; such that
S(2n)/S(n)<1+27. Let k; =i. Then

S(kn)IS(n) = 1+ zz(sann— S - Dm)IS(n)

S14+3G-DSC)=-Sm)SM) =1+ —-D27 =1 +e,
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provided i is large enough.

ProorF oF THEOREM 1. Clearly I =II.If inf,S(2n)/S(n) = 1, then by Lemmas
4 and 5 d{(a,p) is not uniformly convexifiable, hence II = II.

IIIl 2. Let § >0and 0 < n <1 be given. By Lemma 1, it is enough to show
that there exists a 8,(n,0)>0 such that if x = 27, aie, y =37, Bie, | | x]],
llyl|=1, ||Sceaxi||[Z6 where E={i; (1-7m)lai|=|B:|}, we have
[|(x +¥)2][P =1-8.(n,0). Also as noted in the proof of Lemma 1, we may
assume without loss of generality that &, 8; Z0 and x = 3[_,aie,y = 3/~ B
for some n <, Notice that for 1 <p <= and 0<n <1, we have 0 <7’ <1
such that for every a,b>0 ((a+b)2’ =(1-7n')(a”+b*)/2, provided
(I-n)az=hb.

Define the sequence {h;}'-, by

. {(1 —n)(a? +BD2  iEE
' (i + B2’ iZE

We may assume, without loss of generality that {h;}{-, is a decreasing sequence.
Indeed let o be the permutation such that {h.,;}-: is decreasing and let
x' = awpe, y =Z-iBswt, then clearly ||x'[[,]]y'l|=1]]x' —y'||=
[lx =yl and [[x"+y'[| =[x +y||. Now

Z"lh.a,- +7'(=-17")"3 ha,

i€E

E h.'a,' +(] + 1],(1 - n’)il) Z h,-a,-
1E€E

i€E
= X (et +gNal2=(|[x [P +[ly|P)2=1.
Since h{” = (a; + B:)/2 for every i, we get that
Sha =[S hi%e | ]| 2l +B2el P =] |0+ 2] P

and hence

® 6+ 1P S 101 =1 S, ha
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Let E = {ij};-(. Since for i € E we have
h” =((1=n"2)" (f +B1)" 2 (1 - 1)/2)"

it follows that
;hf,a,- =| I‘;h Al C'”;E ae [Pz Ci0°.
Consequently, by Lemma 3,
;hiia,-, = ;Eh.-a, = C,07"%*

and hence by (8) ||(x + y)/2|]” =1 - Csn’6”"** This proves the existence of a
suitable §,(n,0).

ReMARK 1. All Lorentz sequence spaces d(a,p) (1 <p <) are strictly
convex.

ProoF. Let x=Zae, y=2ZBe &d(ap) ||lyll=]||x]|=1 and
[|(x +y)/2|| = 1. Assume that the sequence |a, + ;| is arranged in decreasing
order. Then

1=+ 0)2(P =S + B 2V a = Ela e + 3| B, a2
=(lix [P +lylP2=t.

For this inequality to become an equality we must have a, = 8; for all i, that is
X=y.

THEOREM 2. Let d(a,p) (2=p <x) be a Lorentz sequence space, satisfying
inf,S(2n)/S(n) =k > 1. Then there exist constants A,, B, >0 such that for all
0<e <l

&) B,(M(e"))"'=8(e)= A, (M(e7"))"",

where 6(g) is the modulus of convexity of d(a,p) and M(x) is the inverse
function of the function g(x) defined by
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0 x=0
(10) g(x)= infSQ2"n)/S(n) x=2" m=0,1,2,---

linearly on each interval of the form (2",2™"").

Before proving the theorem we make some simple observations concerning
the function g. Since

(1 g(2")=infSQ2"n)/S(n)=infSQ"*'n)/S(n)=gQ2"""H,
g(x) is an increasing function which satisfies g(2™) = k™. Now since
(12) g2@2™)2" =inf(S2"n)2"S(n)) = inf(SQ2"*'n)/2"*'S(n))

— g(2m+l)/2m+l’

we get that g(2™)/2™ is a decreasing function of m, and therefore g(x)/x is a
decreasing function of x on [1,%).Hence M(x)/x is an increasing function of x,
where M(x)= g~ '(x). Moreover

(13)  g@"")/g@™)

= (ir:fS(Z"‘“n)/S(n))/(ir:fS(Z"‘n)/S(n))
= ir:f<5(2”2n 1S 2n )) <ir:fS(2n)/S(n)>/<irn|fS(2’"n S (n )) k>,

Hence g(2x)/g(x)= k > 1 for all x >0. In that case M (kx)/M(x)=<2 for all
x >0, which is equivalent to the A, condition. In the sequel we shall need also
the following lemma.

LEMMA 6. Let f(x) be a function satisfying the A, condition for x = | such
that f(x)/x is increasing. Then
I)  There exists a convex function u(x) which is equivalent to f(x) on [1,).
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II) There exists a convex function v(x) which is equivalent to w(x)=

&N on (0,1].

Proor. 1. Define the function u(x)= i supo<.=.f'(t)dv. Clearly u(x) is
convex, and u(x) = f(x) for all x = 1. Since the A, condition is equivalent to the
condition xf'(x)/f(x)= A for all x =1 and some constant A, we get that:

uix) = Afox(sup f(t)/t) dv = Afox(f(v)/u)dv < Af(x)

O<t=vp
for all x = 1.
Part II is proved by a similar argument. The function v is defined by

v(x)= J'x sup w'(t)dv.

O<r=v

Since

(14) S@2"n)S(n)zg2") forall n.m=1.2,--

the proof of Lemma 2 shows that

(15) (SQ™n)—=S(2" -Hn))/S(h)zgR™)2™"(k —1) nm=12---

In view of these inequalities we can reformulate Lemma 3 as follows.

LEMMA 7. Let d(a,p) be a Lorentz sequence space with inf,S(2n)/S(n)=
k>1, and let € >0. Let {h};-1 be a decreasing sequence, and {h;}i-, a
subsequence of {h:}'-, satisfy (3) and (4), then

(16) > hya, = C(M(e )"

where M(x) =g '(x), g(x) is defined by (10), and C >0 is some constant.

Proor. Let A and B be as in the proof of Lemma 3, where m is a real
number chosen so that

a7 g(2m)=4¢"".

By (14) the same computation as that in (6) shows that Z,c.BS()=
2(g(2™)) ' =¢£"/2. Hence by (15) the same computation as that in (7) gives
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Zhiia,-,. Zk-1)gQR™)-2" e 2z -1)27"=C(M(e )",

We denote by C. >0 i =1,2,--- the constants which will appear in the
sequel.

Proor OF THEOREM 2. We show first that 8(g)= B,(M(¢77))"'. Let
x,y €Ed(a,p),||x]|=|ly|]|=1and ||x —y||Z ¢, 0<e < 1. As we have seen in
the proof of Lemma 1, we may assume, without loss of generality, that
x =23 a6, y = 2., Bie; for some t <oo, that a;, B; =0 for all i, and that
||Zien (o — Bi)ei || Z /4 where H ={i; (1 —¢/4)a; = B;}. Let n =[—loge] and
™ =¢'*"4 k=0,1,---,n. Notice that if (1-n)a=b,1>n >0,a,b>0
then
(18) ((@a +b)2)" =(1—7n)(a® +b")2

where 74 is given by
(19) n=1-2""Q=n)y A+U-n))" =Cmi+O0(nv.
Define H,, k =0,1,---,n by
(#/0)] H ={i; - <B=(1-n)a} k=0,1,---,n—1.
H, ={i; 0 < Bi =3/4a;}

and put & =||Sicu, (& —Be]||, k =0, -, n. Clearly

1) 205'; z(c/y and ) Hi=H.
Now either
(22) ||i€§;,'"(a.- -Be||zel8
or
(23) I 2 (@—p)e || zel8.
1o,

k=0
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If (22) holds, define the sequence {h;}i-, by

{ (1-mn?+B%)N2 i€H,
h.‘:

(s + B2 i H,

As we remarked in the proof of Theorem 1 there is no loss of generality to
assume that {h;}i-, is a decreasing sequence. We have

(24) [+ 2] P =|| 2 hiveall

=S ha = (|x|[P +{[yIP)/2=n:(0 -0 3 ha.
Since 7. = 1/4, 1/, is a constant independent of &, and since h; = (1 —n))a’/2
we get that
(25) II_EH hive |P=Cl| T e |l = Cse”,
{€H, 1EH,
Using Lemma 7 with {h}ien, as {h;}i-,, we deduce that Zcy hia;

C«{(M(e7"))"’, and by (24) | |(x + ¥)/2|| = 1= Cs(M(e ") ~". If (23) holds, define
the sequence {h:}i-, by

{ (1—n(a? +B%)2 i€eH, k=0,1,-,n—1.
h,‘=

((a; + B:)/2 otherwise

and assume that {h;}i-, is a decreasing sequence. Clearly

(26) [lx+ )2l =[| X hi%e|”  and
i=1

@7 S ha +§0nzu —a 3 hac=(Ix [P+ lly[PRsT.

Now fix k, 0=k =n — 1. For every i € H;

o — B.‘ = M1 hence
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(28) hz(1—-mda? 2z -1 (a = B:) 2%
consequently
(29) /| ; hi%e |l = (1—- 027 0| E}; (a; — Be:|[.

Since m.i=me " and 10=Ze "z 1 provided ¢ =10"" we get that
|| Zen hie || Z Coniet. Hence by Lemma 7,

(30 > ha = CAM(niei®)) "

iEH,

Using (19), (26), (27) and (30) we deduce that

n—1

Hx + 92| =1-Ce Y, ni(M(niei®) .

k=0
By Lemma 6 (II), (M(x'))"' is equivalent to an increasing convex function

G(x) 0<x =1. Using (21) and the facts that p =2 and Zilini>n.. =
(¢ 14 = Cs we get that

e+ 2l =1 —C.0G<goni"’e‘i) = —c..G(kZng)

=1-CnGE”)=1-Cu(M(e )"

This proves the first inequality in (9). To prove the other inequality in (9) let
¢ >0 and define x = Za,e;, y = ZB:e;, by

(SQmn))"'" i=Q2"—-Dn
a = {(S(Z”n))“"’ i=2"n B = { —(SQ@™ )" Q"= n<i=2"n
0 i>2"n 0 i>2"n

where 2=g(2™)e” =1 and n is chosen such that 2g(2"n)= S(2"n)/S(n).
Clearly ||x||=]||y|l=1,||x —y|F =2°S(n)/SQ™n)Z £® and ||(x + y)/2||" =
(SQ@™ - Dn)/SQ™n)=1-(SQ"n)—S(2™ = Dn)/SQ"n)z=1-2"" =

1 — Cu(M(e7?))"". This concludes the proof of the theorem.
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Let d(a,p) be a Lorentz sequence space and suppose that there exists an n,
such that S(2n)/S(n) is an increasing function of n for n = n,. Then for n > n,,
SQ2™n)/S(n)= S2"ne)/S(ne) = S2™)/S(n). Hence there exist constants A,
and A, such that A,.SQ2")=zg(2™")z= A.S(2™).

For example if a.~n""(logn)® O=a<1,0=8), then S(n)~
n'*(logn)™ and S(2n)/S(n) is an increasing function of n. Hence g(x)~
x'"“(logx)™® and therefore M(x)=g '(x)~x"""*(logx)?'"*. Consequently,
8(e)~M(e®)) "' ~e""|loge [P

If the function S(2n)/S(n) is decreasing then

k =infS(2n)/S(n)=1imS(2n)/S(n) and

SQ"n)/S(nyz k™ = Q)L

Hence g(x) is equivalent to the function x'***, and 8(g)~ ((¢ *)"%*)™' =
e?Ms*  For example, if an~n‘“(]0gn)ﬂ 0=a<1,0<g), then S(n)~
n'"=(logn)® and S(Qn)/S(n) is a decreasing function of n. Since
lim,S(2n)/S(n) =2'"* we get that 8(g)~ """

THEOREM 3. Let X be a Banach space isomorphic to a Lorentz sequence
space d(a,p) (p =2). Then there exists a constant A >0 such that
8x(e)/84(e)< A for all 0<g <1, where 8x(¢) and 8,(¢) are the moduli of
convexity of X and d(a,p) respectively.

Proor. Define g(x) and M(x) as in Theorem 2. Since M(x) satisfies the A,
condition for large x there is a constant C such that M (2x) = CM (x) for all
x = 1. Suppose that the theorem is false. Then there would exist a sequence
{&:}7-, such that for every i & =27 and

31 8x(£:)/84(&:) ~ 8x(e)M(e77) = C".

Choose now m; so that 27 '=g(2™)ef=2" and n so that 2g(2™)=
S@2™n)/S(n).
For every integer i define the sequence {y{*\% by

1, +kn,

yO=[a/(SHN] D e k=1,2,---2™

t=l,+k—ln,+1
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where
I =22"'m,- i=273,-
and [,=0. Now ||y®|| =&, k=1,2,---,2™ and
| IZ =y = e(S@™m)"? IS ()" ~ (g 2™N™ ~(27)"™.

Thus
® 2™ w
IIDERYIEPYCREEE
i=1 k=1 i=1

and therefore the series

.

N

T

©

(L8]
yi

i=1 k=1

converges unconditionally. By a theorem of Kadec [5] this implies that
w 2™
;gsx(llyf“||)<°°-

But by (31)
2 8x(||y®[) 2 2"8x () 2 2C' [M(e7)

=2"C Mg (2™)-2)=z2™CHC'M(@EQR™) =1,
a contradiction.

THEOREM 4. Let f(x) be a function defined on [0,1], and let p Z 2. Necessary
and sufficient conditions for f(e?) to be equivalent to the modulus of convexity
of some Lorentz sequence space d(a,p) are:

(i) f(0)=0 and f(x) is equivalent to an increasing convex function,

(i) There exists a constant C >0 such that for all 0<A,n <1 f(An)=
Cf(\)f(m).

Proor. The conditions are necessary. By Theorem 2, 8(¢), the modulus of
convexity of d(a,p) (<>p =2), is equivalent to the function f(¢?) where

(32) fle)y=M@E"",

By the properties of the function g(x)= M"'(x) defined by (10), it is easily
checked that f(x) is equivalent to an increasing convex function satisfying the
A, condition for small values of x. Hence (1) holds. Notice also that by (10) for
al nm=1,2,---
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(33) g@m2") = irklf(S(Z"' 2"k)IS (k)

zZinf(SQ2"2%)/SQ"k)inf(SQ"k)/S(k)) = g(2™)g(2").

Since g is concave there exists therefore a C, >0 such that for all x,y, =1
(34) glxy)zCig(x)g(y)

and this implies that (ii) holds. Conversely, let f(x) be an increasing convex
function on [0, 1], satisfying f(0) = 0. Define h(x) = (f(x ")) (1 = x < %). Since
f(x)/x is increasing the same is true for h(x)/x. By (ii) we have h(xy)=
Csh(x)h(y) (1 =x,y <) and thus in particular h satisfies the A, condition on
[i,w). Hence by Lemma 6 (I), h(x) is equivalent to an increasing convex
function u(x) on [1,%) with u(1) = 1. Define now S(x)=u""(x) and

_ 1 n=1
(35 an {S(n)—S(n—l) n>1, neN.

Since S(x)=u"'(x) is a concave function, it follows that the sequence a.
decreases to 0. Also by (i1), S(xy)= C:S(x)S(y) for x,y = 1, and hence g(x)
defined by (10) is equivalent to S(x). By our construction of S(x) it follows
therefore that the modulus of convexity of d(a,p) where {a.} are given by (35)
is equivalent to f(e”) where f is the given function.
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